39,230 research outputs found

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file

    Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity

    Full text link
    We study holographic superconductors in Einstein-Gauss-Bonnet gravity. We consider two particular backgrounds: a dd-dimensional Gauss-Bonnet-AdS black hole and a Gauss-Bonnet-AdS soliton. We discuss in detail the effects that the mass of the scalar field, the Gauss-Bonnet coupling and the dimensionality of the AdS space have on the condensation formation and conductivity. We also study the ratio ωg/Tc\omega_g/T_c for various masses of the scalar field and Gauss-Bonnet couplings.Comment: 21 pages, 10 figures. accepted for publication in PR

    A new approach to the inverse problem for current mapping in thin-film superconductors

    Full text link
    A novel mathematical approach has been developed to complete the inversion of the Biot-Savart law in one- and two-dimensional cases from measurements of the perpendicular component of the magnetic field using the well-developed Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is provided in great detail to allow a straightforward implementation as opposed to those found in the literature. Our new approach also refines our previous results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)] deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys. 65, 361 (1989)]. We also verify and streamline the iterative technique, which was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)] to account for in-plane magnetic fields caused by the bending of the applied magnetic field due to the demagnetising effect. After testing on magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film, we show that the procedure employed is effective
    • …
    corecore